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Spherical Wave Sources in FDTD
M. E. Potter, Member, IEEE, M. Okoniewski, Senior Member, IEEE, and M. A. Stuchly, Fellow, IEEE

Abstract—A method is described which simulates the propaga-
tion of electromagnetic waves as spherical wave modes, approxi-
mated by an FDTD method. Modal equations in radius and time
are discretized for explicit time-stepping. Angular functions are
implemented analytically as required. Computed results for two
examples are compared with analytic solutions—a resonatorand a
dipole near a conducting sphere—to demonstrate the validity of
the method with very good agreement. This method is intended, as
a source condition in total/scattered FDTD methods, to allow for
modeling of near-field object interactions without explicitly mod-
eling the source.

Index Terms—Difference equations, FDTD methods.

I. INTRODUCTION

T HE FDTD method has been used extensively in electro-
magnetic field modeling because of its ability to robustly

handle interactions of fields with complex heterogeneous struc-
tures. In particular, the total/scattered field formulation has al-
lowed for efficient implementation of arbitrarily directed uni-
form plane waves [1], consequently facilitating efficient mod-
eling of far-field scattering problems. The total/scattered ap-
proach is not restricted to plane waves and can be expanded
to any waveforms that can be easily described in analytical or
semi-analytical form. For example, we have recently shown that
an infinite line source can be implemented in a manner similar
to plane waves [2].

While existing formulations of FDTD have been immensely
successful, they are not well suited to problems that involve near
field scattering/interaction problems, where both the source and
object are in the same domain but at a substantial distance from
each other. This is due to the exceedingly high demands for com-
putational resources that may result from the domain size and/or
dramatically different requirements for the mesh density in the
source and object areas. Johnson and Rahmat-Samii [3] pro-
vide a solution for this problem by separating the domain into
source and scatterer regions coupled by surface boundary radi-
ation conditions. This method can incur large storage require-
ments for calculation of the radiation conditions.

Radiating sources can be accurately represented in the near-
field by using spherical wave expansions (SWE) [4], [5]. For ex-
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TABLE I
ANALYTIC EXPRESSIONS

FOR MODES

ample, the SWE are often used to represent antennas measured
on test ranges. Successful implementation of that idea within
the FDTD framework would allow for the coupling between the
source and scatterer to be accomplished by means of spherical
modes and at a considerably lower cost than in the standard ap-
proach.

In the proposed method, a model of a source utilizing
spherical waves is implemented in the total/scattered FDTD.
Since transverse properties of spherical modes are known, the
behavior of a mode can be represented on a one-dimesional
(1-D) radial grid. Thus, much like the plane wave sources in
the FDTD method, the spherical wave modes are time-stepped
on 1-D staggered electric/magnetic field source grids in the
radial direction, representing mode propagation in free space.
Spherical wave modes can then be interpolated and summed on
the Huygens’ surface to represent the total field of the source,
thus providing the coupling between the complex source and a
scatterer using low cost 1-D grids. It is assumed that the object
of interest is beyond the reactive near-field of the source and,
therefore, there is no significant coupling between source and
object. In this contribution, we outline a method and provide
two numerical examples validating the technique.

II. M ODEL DESCRIPTION

Consider Table I, describing spherical waves for bothand
modes, as translated from the frequency to the time domain

[6]. All components are directly related to the functionsand
(where ) through simple deriva-
tives, with and being modal coefficients. For the Huy-
gens’ surface, polar and azimuthal derivatives can be determined
analytically so, at this point, concern will be given to the time
and radial derivatives. For the radial and time dependance of
field components (lowercase letters will be used hence-
forth for dependance on and only), consider a discretized
scheme. In the modes, the field components ( )
lie at locations and ( ) lie at . For
modes, the field components ( ) lie at locations
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TABLE II
ANALYTIC AND COMPUTED RESONANT FREQUENCIES(f ) (MHZ) FOR

n = 1, FOR A SPHERICAL CAVITY OF RADIUS r = 1 m

and ( ) lie at . Magnetic field components
are at timesteps and electric field components at timesteps

. For a particular source, the spherical wave co-
efficients and time excitation are incorporated as a hard source
for each mode at the minimum radius. All modes are propa-
gated on their own 1-D FDTD grid in radius and time. Each
mode is then used as a source for points on the Huygens’ sur-
face in the total/scattered FDTD method, exactly analogous to
a plane wave excitation, weighted by the appropriate polar and
azimuthal functions.

Let us first consider the radial components. Lettingor
, we can formulate the wave equation in[7]

(1)

A difference equation corresponding to (1) is

(2)

where the superscript denotes the timestep index. This
produces an FDTD method of calculating radial components.
Examining Table I once again, we see that the other compo-
nents can be determined directly from the radial components
via simple radial or time derivatives. A stability criterion for
this method has been reported in [8].

A. Radial Derivatives

The radial derivatives of concern, e.g.,
, are of a similar form. It needs to

be emphasized that angular components are staggered from the
radial components by half a grid cell and therefore they lend
themselves immediately to a central difference representation

(3)

where is the radial index, represents a given angular com-
ponent, and represents magnetic or electric fields.

B. Time Derivatives

Time derivatives, e.g., are of
a similar form also. Electric and magnetic fields are staggered
in time by half a time step and the necessary components are

Fig. 1. AnalyticE fields for a dipole near a conducting sphere in V/m.

co-located in radius. So, once again, it is a simple measure to
represent the time derivative with a central difference scheme

(4)

where and , are electric or magnetic fields. This
scheme requires the future value of the radial component.
However, since the radial component depends only on previous
radial components (and not on polar or azimuthal components),
the -th time step nonradial components can be evaluated after

are already known, without loss of precision or any numer-
ical overhead. Moreover, those components can be computed
only in those locations where they are actually needed.

III. V ALIDATION

A. Resonator

From [7], the resonant frequencies for the mode for a
sphere of radius m are tabulated in Table II for .
Equation (2) was tested for a spherical cavity resonator of radius

m for this same mode, with m and
ps. The cavity was excited with an impulse function and the

simulation was allowed to proceed for 10 000 time-steps. To
examine the results, the Fourier transform of the time signal at

m was taken at a frequency resolution of 1 MHz. The
computed results are indicated in the second row of Table II,
indicating excellent agreement with the analytic solutions.

B. Dipole and Conducting Sphere

As a second example, a much more demanding problem of a
dipole near a conductive sphere is considered. For an-directed
electric dipole at above a perfectly conducting
sphere (i.e., above the pole) with moment , the total
fields are given in [9]. A number of cases were evaluated with
results attaining similar precision. As an example case, a sphere
of radius m is reported here. The dipole was located
0.25 m from the sphere surface. The frequency of the radiated
signal was chosen as GHz, giving a wavelength

m, or a wavenumber m m .
The radial and time resolutions were m and
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Fig. 2. ComputedE fields for a dipole near a conducting sphere in V/m.

ps, respectively, and 300 radial steps were used. Simulations
were allowed to progress for 1000 time-steps. It is suggested
in [4] that the expansion can be truncated at as the
wavenumber/minimum sphere product. In this case, ,
so the expansion was truncated at modes.

Analytic and computed results for are shown in Figs. 1
and 2 for in increments, for (the

-plane). Solutions are shown only for the last 200 radial steps,
to avoid having large nearer-field wave amplitudes swamping
out further-field amplitudes.

IV. CONCLUSION

A detailed method of propagating spherical waves via an
FDTD approximation has been presented that should remove
the necessity to explicitly model sources in near-field scattering
simulations. Two validating examples have been reported
representing excellent accuracy of the method. Work continues
on applying this technique to study SAR and radiation patterns
resulting from sources in close proximity to human body.
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